MCM formats
CCT.INP
The meaning of the options is not known.At the bottom, first go the numbers of BIG molecule (the target) and than the SMALL molecule (the source).
For example:
LNAMES f LWR t LABS t LROA t LVCD t LDIA t LOFF t IWG 0 LSTRICT f CUTOFF 20.0 LHALTONERROR f POLYMER 1 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 All atoms were assigned.
.TEN
- Atomic Polar Tensor (also known as APT, Electric Dipole Transition Moment derivatives, DipoleDeriv)
- Atomic Axial Tensor (aka AAT, Magnetic Dipole TM derivatives)
N 0 0 dmu_x/dy1 dmu_y/dy1 dmu_z/dy1 1 ... dmu_x/dzN dmu_y/dzN dmu_z/dzN N dMu_x/dy1 dMu_y/dy1 dMu_z/dy1 1 ... dMu_x/dzN dMu_y/dzN dMu_z/dzN N dMJ_x/dPx1 dMJ_y/dPx1 dMJ_y/dPx1 1 ... dMJ_x/dPzN dMJ_y/dPzN dMJ_y/dPzN N 0 0 0 1 .. 0 0 0 N dm_x/dPx1 dMJ_y/dPx1 dMJ_y/dPx1 1 ... dm_x/dPzN dMJ_y/dPzN dMJ_y/dPzN N
For example:
17 11 0 2.40350370 -0.73274850 0.50895980 1 -0.60681310 0.47097490 0.12865070 1 0.56992450 0.24893080 2.03073430 1 0.01258320 0.01302520 0.25962920 3 -0.02520750 0.11954660 -0.60985980 3 -0.20324020 0.63358530 -0.15445970 3 ... 0.00000000 0.00000000 0.00000000 1 0.00000000 0.00000000 0.00000000 1 0.00000000 0.00000000 0.00000000 1 0.00000000 0.00000000 0.00000000 2 0.00000000 0.00000000 0.00000000 2 ... 2.40350370 -0.73274850 0.50895980 1 -0.60681310 0.47097490 0.12865070 1 ...
.TTT
ROA tensors:- Polarizability derivatives (aka PolarDeriv, Alpha),
- Optical Rotation Derivatives (aka OptRotDeriv, Electric Dipole - Magnetic Dipole derivatives, G),
- DQ Polarizability Derivatives (aka DQPolDeriv, Electrid Dipole - Electric Quadrupole derivatives, A).
# ignore 1 line N atoms # ignore 3 lines 1 1 Alpha_xx/x1 Alpha_yx/x1 Alpha_zx/x1 1 2 Alpha_xx/y1 Alpha_yx/y1 Alpha_zx/y1 1 3 Alpha_xx/z1 Alpha_yx/z1 Alpha_zx/z1 .. N 3 Alpha_xx/zN Alpha_yx/zN Alpha_zx/zN # ignore 1 line 1 1 Alpha_yx/x1 Alpha_yy/x1 Alpha_zy/x1 1 2 Alpha_yx/y1 Alpha_yy/y1 Alpha_zy/y1 1 3 Alpha_yx/z1 Alpha_yy/z1 Alpha_zy/z1 .. N 3 Alpha_yx/zN Alpha_yy/zN Alpha_zy/zN # ignore 1 line 1 1 Alpha_zx/x1 Alpha_zy/x1 Alpha_zz/x1 1 2 Alpha_zx/y1 Alpha_zy/y1 Alpha_zz/y1 1 3 Alpha_zx/z1 Alpha_zy/z1 Alpha_zz/z1 .. N 3 Alpha_zx/zN Alpha_zy/zN Alpha_zz/zN # ignore 3 lines 1 1 G_xx/x1 G_xy/x1 G_xz/x1 1 2 G_xx/y1 G_xy/y1 G_xz/y1 1 3 G_xx/z1 G_xy/z1 G_xz/z1 2 1 G_xx/x2 G_xy/x2 G_xz/x2 .. N 3 G_xx/zN G_xy/zN G_xz/zN # ignore 1 line 1 1 G_yx/x1 G_yy/x1 G_yz/x1 .. N 3 G_yx/zN G_yy/zN G_yz/zN # ignore 1 line 1 1 G_zx/x1 G_zy/x1 G_zz/x1 .. N 3 G_zx/zN G_zy/zN G_zz/zN # ignore 3 lines 1 1 A_xx/x/x1 A_xy/x/x1 A_xz/x/x1 1 1 1 1 1 2 A_xx/x/y1 A_xy/x/y1 A_xz/x/y1 1 2 1 1 1 3 A_xx/x/z1 A_xy/x/z1 A_xz/x/z1 1 3 1 1 2 1 A_xx/x/x2 A_xy/x/x2 A_xz/x/x2 2 1 1 1 ... N 3 A_xx/x/zN A_xy/x/zN A_xz/x/zN N 3 1 1 # ignore 1 line 1 1 A_xy/x/x1 A_yy/x/x1 A_yz/x/x1 1 1 1 2 1 2 A_xy/x/y1 A_yy/x/y1 A_yz/x/y1 1 2 1 2 1 3 A_xy/x/z1 A_yy/x/z1 A_yz/x/z1 1 3 1 2 ... N 3 A_xy/x/zN A_yy/x/zN A_yz/x/zN N 3 1 2 # ignore 1 line 1 1 A_xz/x/x1 A_yz/x/x1 A_zz/x/x1 1 1 1 3 1 2 A_xz/x/y1 A_yz/x/y1 A_zz/x/y1 1 2 1 3 1 3 A_xz/x/z1 A_yz/x/z1 A_zz/x/z1 1 3 1 3 ... N 3 A_xz/x/zN A_yz/x/zN A_zz/x/zN N 3 1 3 # ignore 1 line 1 1 A_xx/y/x1 A_xy/y/x1 A_xz/y/x1 1 1 2 1 1 2 A_xx/y/y1 A_xy/y/y1 A_xz/y/y1 1 2 2 1 1 3 A_xx/y/z1 A_xy/y/z1 A_xz/y/z1 1 3 2 1 ... N 3 A_xx/y/zN A_xy/y/zN A_xz/y/zN N 3 2 1 # ignore 1 line 1 1 A_xy/y/x1 A_yy/y/x1 A_yz/y/x1 1 1 2 2 1 2 A_xy/y/y1 A_yy/y/y1 A_yz/y/y1 1 2 2 2 1 3 A_xy/y/z1 A_yy/y/z1 A_yz/y/z1 1 3 2 2 ... N 3 A_xy/y/zN A_yy/y/zN A_yz/y/zN N 3 2 2 # ignore 1 line 1 1 A_xz/y/x1 A_yz/y/x1 A_zz/y/x1 1 1 2 3 1 2 A_xz/y/y1 A_yz/y/y1 A_zz/y/y1 1 2 2 3 1 3 A_xz/y/z1 A_yz/y/z1 A_zz/y/z1 1 3 2 3 ... N 3 A_xz/y/zN A_yz/y/zN A_zz/y/zN N 3 2 3 # ignore 1 line 1 1 A_xx/z/x1 A_xy/z/x1 A_xz/z/x1 1 1 3 1 1 2 A_xx/z/y1 A_xy/z/y1 A_xz/z/y1 1 2 3 1 1 3 A_xx/z/z1 A_xy/z/z1 A_xz/z/z1 1 3 3 1 ... N 3 A_xx/z/zN A_xy/z/zN A_xz/z/zN N 3 3 1 # ignore 1 line 1 1 A_yx/z/x1 A_yy/z/x1 A_yz/z/x1 1 1 3 2 1 2 A_yx/z/y1 A_yy/z/y1 A_yz/z/y1 1 2 3 2 1 3 A_yx/z/z1 A_yy/z/z1 A_yz/z/z1 1 3 3 2 ... N 3 A_yx/z/zN A_yy/z/zN A_yz/z/zN N 3 3 2 # ignore 1 line 1 1 A_xz/z/x1 A_zy/z/x1 A_zz/z/x1 1 1 3 3 1 2 A_xz/z/y1 A_zy/z/y1 A_zz/z/y1 1 2 3 3 1 3 A_xz/z/z1 A_zy/z/z1 A_zz/z/z1 1 3 3 3 ... N 3 A_xz/z/zN A_zy/z/zN A_zz/z/zN N 3 3 3
For example:
ROA tensors, cartesian derivatives 17 atoms The electric-dipolar electric-dipolar polarizability: Atom/x jx jy jz Alpha(1,J): 1 1 -3.6960648 0.3322048 -2.5782532 1 2 -1.0482051 2.0948222 -0.2459234 1 3 1.3209005 -0.0859936 -0.3806910 2 1 -3.5504293 -0.5604898 -1.8366206 ... 17 3 0.8220007 0.1205094 0.8688957 Alpha(2,J): 1 1 0.3322048 3.2272859 -0.8416498 1 2 2.0948222 -2.3129049 3.6434524 ... 17 3 0.1205094 2.8680563 1.0047656 Alpha(3,J): 1 1 -2.5782532 -0.8416498 -3.0780431 ... 17 3 0.8688957 1.0047656 19.3026974 The electric dipole magnetic dipole polarizability: Atom/x jx(Bx) jy(By) jz(Bz) G(1,J): 1 1 -2.0878348 -9.3993480 0.1325277 ... 17 3 0.5953672 -21.2870440 1.5797548 G(2,J): 1 1 -1.7258065 1.3046492 -7.4196806 ... 17 3 23.2474639 0.1728934 -4.3657416 G(3,J): 1 1 0.4593318 1.0463998 -0.0007906 ... 17 3 0.1348281 23.6253404 -0.0847984 The electric dipole electric quadrupole polarizability: Atom/x kx ky kz A(1,1,K): 1 1 12.8702160 2.7768008 -5.4281020 1 1 1 1 ... 17 3 -6.2327661 1.7010074 52.1248965 17 3 1 1 A(1,2,K): 1 1 2.7768008 2.6943298 3.1538685 1 1 1 2 ...
.X
Molecular geometry with bonds. The first line is ignored, the second line contains number of atoms. Then follow atoms, one on each line. The first column is atomic type, then come x,y,z coordinates. Follow 6 columns of atom indexes connected to that atom. Meaning of the last column is not known.Comment line 17 6 0.000000 0.000000 0.000000 2 7 8 0 0 0 0 0.0000 6 0.000000 0.000000 1.547540 1 3 6 9 0 0 0 0.0000 7 1.437856 0.000000 2.050119 2 4 10 11 0 0 0 0.0000 ...